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Abstract

The Lunar Reconnaissance Orbiter (LRO) has been orbiting the Moon since

2009, obtaining unique and foundational datasets important to understanding

the evolution of the Moon and the Solar System. The high-resolution data

acquired by LRO benefit from precise orbit determination (OD), limiting the

need for geolocation and co-registration tasks. The initial position knowledge

requirement (50 meters) was met with radio tracking from ground stations, af-

ter combination with LOLA altimetric crossovers. LRO-specific gravity field

solutions were determined and allowed radio-only OD to perform at the level

of 20 meters, although secular inclination changes required frequent updates.

The high-accuracy gravity fields from GRAIL, with <10 km spatial resolution,

further improved the radio-only orbit reconstruction quality (<10 meters). How-

ever, orbit reconstruction is in part limited by the 0.3-0.5 mm/s measurement

noise level in S-band tracking. One-way tracking through Laser Ranging can

supplement the tracking available for OD with 28-Hz ranges with 20-cm single-

shot precision, but is available only on the nearside (the lunar hemisphere facing
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the Earth due to tidal locking). Here, we report on the status of the OD effort

since the beginning of the mission, a period spanning more than seven years.

We describe modeling improvements and the use of new measurements. In

particular, the LOLA altimetric data give accurate, uniform, and independent

information about LRO’s orbit, with a different sensitivity and geometry which

includes coverage over the lunar farside and is not tied to ground-based assets.

With SLDEM2015 (a combination of the LOLA topographic profiles and the

Kaguya Terrain Camera stereo images), another use of altimetry is possible

for OD. We extend the ‘direct altimetry’ technique developed for the ICESat

mission to perform OD and adjust spacecraft position to minimize discrepan-

cies between LOLA tracks and SLDEM2015. Comparisons with the radio-only

orbits are used to evaluate this new tracking type, of interest for the OD of fu-

ture lunar orbiters carrying a laser altimeter. LROC NAC images also provide

independent accuracy estimation, through the repeated views taken of anthro-

pogenic features for instance.

Keywords: Lunar Reconnaissance Orbiter, Moon, Orbit Determination,

Radio Tracking, Laser Altimetry

1. Introduction

The Lunar Reconnaissance Orbiter (LRO), after more than eight years since

its launch in June 2009, continues to collect scientific data about the Moon.

Our view and knowledge of the Moon was much improved thanks to all seven

instruments onboard LRO. Indeed, LRO is now in its third extended science5

mission, named the ‘Cornerstone Mission’ which will address fundamental ques-

tions about the evolution of the Moon and our Solar System, from formational

processes, such as early lunar tectonism, to evolutionary processes, such as the

delivery and sequestration of volatiles, to contemporary processes, such as the

temporal variations in near-surface dust and the present impact cratering rate.10

To achieve its past and current objectives, the science data collected by the

LRO instruments need to be geolocated and co-registered for calibration and

2



analysis. This is particularly important for high-resolution instruments like the

Lunar Orbiter Laser Altimeter (LOLA; Smith et al., 2010a, 2017) and the

Lunar Reconnaissance Orbiter Camera (LROC; Robinson et al., 2010). In15

addition to their geometric calibration, which has improved with time with up-

dates to the LOLA boresight (Smith et al., 2017) and LROC pointing (Speyerer

et al., 2016), the accurate knowledge of LRO’s trajectory is critical to obtain

geodetically-accurate datasets. The early results of the OD work (Mazarico

et al., 2012) obtained spacecraft positions better than ∼ 20 meters, improved20

from the original 50 meters mission requirement (Chin et al., 2007).

In this work, we use established OD methodology to obtain improved orbital

position knowledge of the LRO spacecraft. Other objectives, such as gravity field

estimation, are possible with the same tools and techniques, but are outside of

the scope of this work. The recent Gravity Recovery And Interior Laboratory25

mission (GRAIL; Zuber et al., 2013a,b) resulted in high-resolution gravity mod-

els (Lemoine et al., 2013, 2014; Goossens et al., 2014), which largely supersede

what can be achieved with the lower-quality tracking data gathered by LRO

and previous orbiters. We use the orbit determination and geodetic parameter

estimation software GEODYN, developed and maintained at NASA Goddard30

Space Flight Center (GSFC). GEODYN has been used for decades for geodetic

analysis of Earth-orbiting and planetary spacecraft, and implements numer-

ous highly accurate force and measurement models to precisely reconstruct the

spacecraft trajectory and reliably estimate model parameters.

Here, we present the latest results of the orbit determination work per-35

formed by members of the LOLA team for LRO. As an update to our previous

work (Mazarico et al., 2012), this manuscript does not describe in detail all as-

pects of the LRO geodetic investigation, and the reader is referred to Mazarico

et al. (2012) for background information. We start with a condensed overview of

the LRO mission profile, particularly its orbit and tracking geometry (Section 2).40

After a description of the various datasets used for LRO OD (Section 3), the

GEODYN software used to reconstruct the LRO trajectory is briefly described,

with emphasis on the changes since Mazarico et al. (2012) (Section 4). In Sec-
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tion 5, we demonstrate the effects of varying a priori assumptions, particularly

for the gravity field and for refined force modeling. We also evaluate the impact45

of improved modeling of solar radiation, with better eclipse timings and space-

craft self-shadowing. Last but not least, in Section 6, we present a new aspect

in our OD processing, namely how the laser altimetry data can be used as a

tracking data type to support the LRO orbit determination, as well as the im-

plications for the OD needs of future lunar orbiters. Section 7 gives a summary50

of the results.

2. Mission Overview

2.1. The orbit of LRO and its evolution

The LRO spacecraft has been orbiting the Moon since June 2009, long past

its initial one-year ‘Exploration’ mission. After a short commissioning phase in a55

30×200-km elliptical orbit, it operated in a 50 km-average orbit (±20 km). Due

to its low altitude and polar inclination, this orbit required monthly station-

keeping maneuvers for maintenance. After slightly more than two years, in

December 2011, LRO was thus placed in a quasi-frozen elliptical orbit, similar

to that of the commissioning phase. Several station-keeping (SK) maneuvers60

were performed subsequently in order to maintain low altitudes near the south,

rather than for orbit lifetime issues; indeed, the current LRO orbit is stable

until at least 2030 (M. Mesarch, private communication). In addition to the SK

maneuvers, the LRO spacecraft is periodically commanded to perform angular

momentum desaturation (AMD) maneuvers. These typically occur every two65

weeks, concomitant with a SK maneuver when possible.

Our analysis of the LRO tracking data follows the approximately monthly

mission phases as used by the LOLA team in the processing and archiving the

LOLA altimetric data. Up to the end of November 2016, 92 phases have been

defined: the commissioning phase (CO), 13 phases for the nominal 1-year Ex-70

ploration mission (NO), 26 phases for the 2-year Science Mission (SM), and 53

phases since for the Extended Science Missions (ES). The boundaries for the
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definition of these phases were typically chosen at the times of the SK maneu-

vers. However, since the transition to the elliptical orbit, AMD maneuvers at

approximately monthly spacings are chosen. In this near-frozen orbit, particular75

conditions (around the noon-midnight geometry of β=0◦; β is the viewing angle

of the orbit from the Sun, with β=±90◦ indicating LRO is in full Sun) lead to

slow momentum build-up, and AMDs can be separated by 6 weeks or more, in

which case mission phases are adjusted to be commensurate with LOLA archive.

Figure 1 presents a detailed summary of the orbit evolution of LRO between80

2009 and 2016, highlighting the changes in periapsis and apoapsis altitudes,

periapsis latitude, inclination, and β angle. The orbit geometry chosen initially

for LRO (β ∼ 0◦ at solstice) evolved slowly as the mission progressed. The

inclination has been steadily decreasing since 2009, from ∼90.2◦ to ∼86.8◦ in

late 2016, with typical intra-monthly variations of approximately ±0.7◦. As85

the inclination decreased, the nadir access to the regions surrounding the poles

was reduced, as shown in Figure 2. This geometry has allowed integrating

instruments such as LEND (Mitrofanov et al., 2010) to improve their signal-to-

noise ratio (SNR) at latitudes substantially less than polar.

2.2. The LRO spacecraft90

LRO is a 3-axis stabilized spacecraft designed to provide near-continuous

nadir viewing for its seven science instruments. It is asymmetrical, with a single

solar array on the -Y side pointed sunward in the -Z direction. Depending on

the time of year (β angle), the solar array is either parked in a fixed position,

or tracks the Sun when in view. Due to this asymmetry, the direction of flight95

of LRO changes every 6 months, from -X to +X forward and vice-versa. Its

High-Gain Antenna is mounted on a long boom and is nominally pointed in the

-Z direction. It is actuated by two gimbals separated by ∼ 10 cm, and tracks

the ground stations.

The initial mass of LRO was above 1900 kg. The Lunar Orbit Insertion burn100

reduced it significantly, to < 1300 kg. Monthly SK maneuvers until December

2011 each used ∼ 7 kg of fuel. In December 2011, after the maneuver that placed
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Figure 1: The evolution of key parameters describing the LRO orbital geometry is shown

for years 2009 to 2016: apoapsis altitude (red); periapsis altitude (blue) and latitude (cyan);

inclination (magenta, on a different scale with 30x magnification, refer to labeled minima and

maxima); and solar β angle (±90◦ indicates face-on, full-Sun periods). The LRO mission

phases used in the LOLA processing and followed in the OD work are shown in gray.

6



-150 -100 -50 0 50 100 150

St
er

eo
gr

ap
hi

c 
Y 

(k
m

) 

-150

-100

-50

0

50

100

150

Extended Science Mission
2012-09 to 2014-09

s 
/ k

m
2

0

600

1200

1800

2400

3000

3600

-150 -100 -50 0 50 100 150

St
er

eo
gr

ap
hi

c 
Y 

(k
m

) 

-150

-100

-50

0

50

100

150

Cornerstone Mission
2016-09 to 2018-09

s 
/ k

m
2

0

600

1200

1800

2400

3000

3600

-150 -100 -50 0 50 100 150
St

er
eo

gr
ap

hi
c 

Y 
(k

m
) 

-150

-100

-50

0

50

100

150

Extended Science Mission
2012-09 to 2014-09

s 
/ k

m
2

0

600

1200

1800

2400

3000

3600

-150 -100 -50 0 50 100 150

St
er

eo
gr

ap
hi

c 
Y 

(k
m

) 

-150

-100

-50

0

50

100

150

Extended Science Mission 2
2014-09 to 2016-09

s 
/ k

m
2

0

600

1200

1800

2400

3000

3600

-150 -100 -50 0 50 100 150

St
er

eo
gr

ap
hi

c 
Y 

(k
m

) 

-150

-100

-50

0

50

100

150

Cornerstone Mission
2016-09 to 2018-09

s 
/ k

m
2

0

600

1200

1800

2400

3000

3600

-150 -100 -50 0 50 100 150

St
er

eo
gr

ap
hi

c 
Y 

(k
m

) 

-150

-100

-50

0

50

100

150

Exploration Mission
2009-09 to 2010-09

s 
/ k

m
2

0

600

1200

1800

2400

3000

3600

-150 -100 -50 0 50 100 150

St
er

eo
gr

ap
hi

c 
Y 

(k
m

) 

-150

-100

-50

0

50

100

150

Science Mission
2010-09 to 2012-09

s 
/ k

m
2

0

600

1200

1800

2400

3000

3600

Nominal
(2009-2010)

Science
(2010-2012)

ESM
(2012-2014)

ESM2
(2014-2016)

ESM3
(2016-2018) Permanent Shadow

85°S-90°S
stereographic

Figure 2: Temporal coverage density over various LRO mission phases is shown for the 85◦-

90◦S region, in a south pole stereographic projection. The color indicates the amount of time

each km2 can be observed from LRO in an assumed perfectly nadir geometry (well-verified in

real operations, with typical on-nadir duty cycles >98%). For spatial reference, the last map

shows the areas in permanent shadow (Mazarico et al., 2011).
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it in the elliptical orbit in order to increase its lifetime, LRO mass was below 1100

kg with less than 50 kg of fuel. In this stable elliptical orbit, the primary fuel

consumption is due to the regular momentum wheel desaturation maneuvers,105

which account for ∼ 2 kg/year. A few SK maneuvers, at an approximate yearly

cadence, have maintained a low periapsis over the south pole, at a cost of ∼

2 kg/year. LRO has now used > 96% of its initial propellant load, but the

reserves can be sufficient for extending operations for another 5-10 years.

3. Datasets110

The OD of the LRO spacecraft is made possible by the analysis of spacecraft

tracking data. As typical, the majority of the LRO tracking data consists of

radiometric Doppler and Range measurements acquired by various Earth-based

ground stations. LRO is notable among planetary missions as having other

tracking data types made possible by its onboard laser altimeter, LOLA (Smith115

et al., 2010a, 2017).

3.1. Radio tracking

While most recent NASA planetary missions operate at X-band frequencies,

the LRO telecommunication subsystem consists of an S-band transponder. Al-

though it has a Ka-band downlink capability, it is only used for telemetry and120

science data. All LRO Doppler data is obtained and archived with an integration

time of 5 seconds.

White Sands. The primary ground station for the LRO mission is the NASA

White Sands station in New Mexico. Built for LRO, ‘WS1’ tracks the spacecraft

daily over 8-10 hours. The regularity of this schedule is a strength for the OD,125

and for the evaluation of OD quality. Because the amount of tracking from other

stations varied through the mission, the long daily tracking sessions from the

White Sands station lends a uniformity to the dataset that is useful to monitor

the OD performance. Considering the inherent limitations of S-band frequency,

the quality of the White Sands range-rate measurements is good (0.2-0.3 mm/s),130
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several times better in fact than the initial mission requirement of 1 mm/s. The

Range data are affected by timing biases, typically well-behaved but showing

enough scatter to warrant adjustment during OD.

USN. The commercial Universal Space Network (USN) provided significant

tracking coverage for LRO during the first 5 years of the mission. The primary135

purpose was to provide a realtime link to LRO for spacecraft telemetry and the

monitoring and commanding of science instruments (e.g., LOLA Laser Ranging

monitoring and Diviner commanding). These stations also provided tracking

measurements, albeit of lower quality than White Sands. The range-rate preci-

sion is around 0.5-0.7 mm/s, again several times better than the requirement of140

3 mm/s. The USN range data suffer from timing biases, with more scatter than

the White Sands range data. Seven USN stations were used, most through the

entire LRO mission, except for a station in Hawaii (115) starting in April 2012

and a station in Weilheim, Germany (128) only rarely used. Starting September

2014, corresponding to the start of LRO’s Extended Science Mission 2 (ESM2),145

the use of USN was much reduced in a cost-cutting effort. That led to some

changes in instrument operations, due to the loss of realtime telemetry over

most Earth longitudes, and resulted in loss of near-continuous tracking cover-

age. This initially prompted questions of whether orbit reconstruction accuracy

would deteriorate (see Section 5.3), and contributed to further developing the150

‘direct altimetry’ measurement approach. The USN still provides tracking on a

pass-by-pass basis for ad hoc support of spacecraft operations, and we use those

data when available.

DSN. The NASA Deep Space Network (DSN) is the most commonly used

ground station network for planetary missions. Its three complexes in Goldstone155

(California), Madrid (Spain), and Canberra (Australia) provide near-complete

sky coverage (Kegege et al., 2012). It was however not used by LRO except

for critical events such as Lunar Orbit Insertion and bi-weekly maneuvers (for

angular momentum wheel desaturation and station keeping). Because the or-

bit perturbations introduced by such maneuvers are large and uncertain, and160
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because the LRO instruments are turned off during these events obviating the

need for high-quality orbits, no precise orbit determination is performed during

the time periods covered by these infrequent DSN passes. As such, the DSN

data are not used in our analysis. We note that since September 2014 the DSN

does provide more regular tracking support, but typically only one tracking pass165

(∼ 1 hour) per day.

All the radiometric LRO tracking data, acquired by the White Sands, USN,

and DSN stations, are archived at the Planetary Data System (PDS) Geo-

sciences Node1, and at the annex MIT LOLA PDS Data Node2.

3.2. Altimetric Data170

The Lunar Orbiter Laser Altimeter (LOLA) instrument (Smith et al., 2010a,

2017) onboard LRO was selected in order to provide accurate topographic in-

formation of fifty ‘Constellation sites’ of high interest for future human explo-

ration (Chin et al., 2007; Gruener et al., 2009) and of the poles (including perma-

nently shadowed regions). LOLA was the first space multi-beam laser altimeter.175

It acquired nearly 7 billion altimetric measurements to date, predominantly over

the first few years of the LRO mission (3 billion by November 2010, and 6 billion

by February 2013). The high-latitude convergence of the tracks due to the ∼ 90◦

inclination yielded excellent high-resolution coverage in the polar regions, and

the >33,000 ground tracks constrain the global shape and provide a reference180

frame for the Moon to an unprecedented degree and accuracy. The precision of

individual LOLA measurements is around 10 cm (Smith et al., 2010a). An esti-

mate of absolute accuracy needs to consider other error contributions, primarily

instrument pointing and spacecraft position. The former is often a challenge for

laser altimeters, but especially for LOLA due to the unexpected ‘LOLA thermal185

blanket anomaly’ recognized early in the LRO mission and described in Smith

et al. (2010a, 2017). Thermal contraction of the blanket attached to the beam

1http://pds-geosciences.wustl.edu/lro/lro-l-rss-1-tracking-v1/lrors_0001
2http://imbrium.mit.edu/LRORS
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expander and receiver telescope was found to be its cause, by pulling the beam

expander out of co-alignment with the receiver telescope. Thanks to its 5-beam

pattern and the magnitude and direction of this temperature-dependent effect,190

nighttime laser pulses from two of the five LOLA beams could still be received

and time-tagged by two detectors intended for other channels. The large num-

ber of altimetric crossovers accumulated over the course of several years of the

LRO mission and a few Earth scan experiments involving ground-based assets

at NASA GSFC helped calibrate the pointing for both daytime (near-nominal)195

and nighttime (misaligned) configurations (Mazarico et al., 2014a).

Early in the LRO mission, considerable effort was spent to include LOLA

altimetric crossovers in the OD process and to obtain LRO-specific lunar gravity

field solutions to further improve orbit reconstruction quality (Mazarico et al.,

2012). Because crossovers relate two intersecting tracks through a relative dif-200

ferential constraint, they require a longer temporal baseline. Practically, this is

done through a multi-satellite approach within NASA/GSFC’s GEODYN OD

software (Pavlis et al., 2012), but it results in slower execution runtime and

complex data pre- and post-processing. After the development of the LLGM-2

gravity field (Mazarico et al., 2012) and especially after the GRAIL mission, the205

benefits of such analysis were deemed too marginal to warrant the added effort,

and we stopped using LOLA altimetric crossovers for OD.

As will be described in Section 4.4, we recently adopted another altimet-

ric measurement type, previously used in Earth geodesy on missions such as

ICESat (Luthcke et al., 2000) and the Near-Earth Asteroid Rendezvous mis-210

sion (NEAR, Zuber et al., 2000). While in those cases, altimetric ranges were

compared to low-resolution, smooth ocean and terrain shape models in order

to improve instrument pointing knowledge or asteroid shape, here we exploit

the high accuracy and resolution of the LOLA topographic maps themselves in

order to adjust spacecraft orbital parameters. We thus demonstrate how, now215

that the GRAIL and LRO missions have yielded these foundational datasets,

spacecraft orbit determination with altimetric ranges, either alone or in concert

with regular radio tracking, performed at similar or better accuracy.
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3.3. Laser Ranging

Because the anticipated quality of the S-band tracking was not sufficient to220

meet the LRO position knowledge requirement, a Laser Ranging (LR) experi-

ment was added to the LRO payload (Zuber et al., 2010). LR could be added

relatively late during mission development thanks to its leveraging the LOLA

instrument for laser pulse detection and time-tagging, and the presence of an

ultra-stable oscillator (USO) onboard LRO. A small telescope mounted on the225

LRO High-Gain Antenna allowed LOLA to be in constant view of the Earth

stations from the Satellite Laser Ranging (SLR) network. A fiber optic bundle

transmitted the 532-nm laser pulses received from Earth to a detector of the

LOLA instrument, which timetagged these one-way LR pulses during the ‘Earth

range window’, a time period within each 28-Hz measurement frame not used230

for the primary lunar altimetric ranging. Analysis of the SLR laser fire times

and LOLA received times provided the one-way Range observables to be pro-

cessed during OD. The OD analysis had to consider and estimate the long-term

behavior and stability of the LRO USO. Over the more than 5 years the LR

experiment operated, 10 stations successfully ranged to LRO. The primary LR235

station at NASA GSFC accounted for 33% of the total data returned. With an

average of ∼16 hours per week, the LR experiment was a success when consid-

ering the numerous operational and weather-related challenges. Other studies

have shown the benefits of LR data to LRO OD (Mao et al., 2011; Buccino

et al., 2016; McGarry et al., 2016; Bauer et al., 2017; Mao et al., 2017), and in240

particular that LR can achieve orbit quality on a par with the radio tracking

when using the GRAIL gravity field (Mao et al., 2017). In this work, we do

not use the laser ranging data, instead focusing on the combination of radio

tracking and altimetry.
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4. Methods245

4.1. GEODYN

GEODYN (Pavlis et al., 2012) is the key software system used in this work,

enabling high-quality orbit determination due to a number of state-of-the-art

force and measurement models and algorithms developed over decades at NASA

GSFC. In brief, GEODYN integrates the LRO spacecraft trajectory using a set250

of force models (effects from planets’ masses and the Moon’s full gravity field,

radiation pressure, relativity, etc.). Concurrently, using a set of measurement

models, GEODYN computes the measurement values expected at the times

of the actual tracking data, given that numerically integrated trajectory. The

discrepancies between observed and computed values, called residuals, are min-255

imized through an iterative least-squares process (Tapley et al., 2004). Though

its concept can thus be simply described, the quality of OD lies in the accuracy

and exhaustiveness of the force and measurement models.

We use the JPL Developmental Ephemerides (DE) for the planetary po-

sitions and lunar orientation model (DE421 as adopted by the LRO project;260

Folkner et al., 2008; Williams et al., 2008). We apply corrections to the ra-

diometric measurements to account for media effects. Weather data from the

tracking stations are used as inputs to compute the tropospheric delay (wet and

dry). The a priori hydrostatic zenith delay is based on Saastamoinen (1972)

and mapped to other elevations using the GMF model (Boehm et al., 2006).265

Radio frequency perturbations from the Earth ionosphere can be large in the S

band, and we apply corrections based on raytracing through Global Ionospheric

Model (GIM; Noll, 2010) 2-hour maps (rotated and interpolated, as detailed in

Lemoine et al., 2013).

In addition to our own previous work on LRO (Mazarico et al., 2012; Mao270

et al., 2013, 2017), GEODYN has been used for all geodetic analysis of spacecraft

tracking data at NASA GSFC, for missions as varied as Clementine (Lemoine

et al., 1997), NEAR (Zuber et al., 2000), Mars Global Surveyor (Lemoine

et al., 2001; Genova et al., 2016), Lunar Prospector (Mazarico et al., 2010a;
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Goossens and Matsumoto, 2008), Mars Odyssey (Mazarico et al., 2007; Gen-275

ova et al., 2016), Mars Reconnaissance Orbiter (Mazarico et al., 2008; Genova

et al., 2016), MESSENGER (Smith et al., 2010b, 2012; Mazarico et al., 2014b),

and Dawn (Mazarico et al., 2015). Over the years, new capabilities have been

added to GEODYN, especially as far as planetary missions are concerned due to

new planetary target or specific instrument requirements, and new measurement280

strategies (Neumann et al., 2001; Mazarico et al., 2010b, 2015). GEODYN has

also been used by other groups, for instance to analyze the tracking data of the

JAXA SELENE spacecraft (Goossens et al., 2011a,b), and of LRO itself (Maier

and Baur, 2016).

Our first publication on the orbit determination effort for LRO (Mazarico285

et al., 2012) provided numerous details on the methodology, and we largely use

the same GEODYN capabilities and follow the OD strategy adopted at that

time. The reader is thus referred to this earlier work (Mazarico et al., 2012) for

specific details on GEODYN. Here, we instead describe several of the modeling

changes that have since been adopted for LRO OD.290

4.2. Eclipse Transition

During the analysis of the GRAIL spacecraft data, spurious signals at the

∼ 1 µm/s level in the Ka-Band Range-Rate (KBRR) data residuals were ob-

served at nearly periodic intervals (Lemoine et al., 2014). Further identified to

occur around the times when the twin spacecraft were entering or exiting eclipse,295

a more detailed modeling of the lunar shape to compute the incoming solar ra-

diation significantly reduced the artifacts due to solar radiation mismodeling.

Although the noise floor of the LRO radio tracking data is much larger than the

GRAIL KBRR, we adopted this modeling enhancement, primarily because of

the difference between average nearside and farside radii, and the fact that the300

default umbra/penumbra model in GEODYN uses the reference radius of the

gravity field, 1738 km, potentially introducing systematic effects. We use the

LOLA lunar topography model to 64 pixels/degree (ppd) archived at the NASA

PDS (Smith et al., 2010a), and model the Sun as 500 discrete sub-sources with

14
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Figure 3: (a) Comparison of per-orbit Sun visibility predictions from the LOLA (top) and

spherical (bottom) lunar shapes. The vertical axis gives the time within each orbit. This

example is at the beginning of the January 2013 eclipse season. (b) Effect of the choice

of lunar shape for the amount of time LRO is predicted to be in sunlight. Negative values

indicate reduced solar radiation pressure accelerations with the actual lunar topography.

varying flux values to account for limb darkening. We also account for lunar305

eclipses due to the Earth, which occur about twice a year, at varying degrees.

Figure 3a gives an example of the percentage of the solar disc visible from

LRO, computed with a 1738 km-sphere and with the LOLA shape model. At β

angle values around 70-74◦ (previously 75-78◦ in the circular orbit), correspond-

ing to the transition to or from the eclipse seasons, the differences are some-310

times large, with the spherical model often missing or delaying some eclipses.

Figure 3b shows the model differences of the time LRO spends in sunlight dur-

ing each orbit over the whole mission. Discrepancies are typically <10 s for

|β| <30◦, and <20 s for |β| <60◦. However, they can reach ∼-480 seconds for

|β| >70◦. In these β conditions, these differences are nearly always negative in315

the eccentric orbit, whereas they were more balanced around zero in the circular

orbit. Although empirical accelerations and solar radiation scale factors can in

part accommodate solar radiation pressure mismodeling, those related to eclipse

timing errors are at short timescales that are difficult to absorb.
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4.3. Self-Shadowing320

The mismodeling of non-conservative forces can be one of the largest error

sources for orbital position knowledge. A slight mismodeling will have a com-

pound effect when integrated over long time periods, and they are the principal

reason (aside from spacecraft thrusting maneuvers) for the relatively short in-

tegration batches (‘arcs’) typically selected for OD (2.5 days in the case of325

LRO, Mazarico et al., 2012). In addition to errors in spacecraft material re-

flective properties which can only be calibrated through estimation during the

OD process, these surface accelerations can be mismodeled if the spacecraft

area is miscomputed. GEODYN has long had the capability to use a simple

spacecraft plate model to compute the spacecraft cross-section from a given330

direction (velocity vector for drag computations, Sun direction for direct solar

radiation pressure; Marshall and Luthcke, 1994). However, with complex space-

craft shapes and/or movable elements, the cross-sectional area is overestimated

when self-shadowing is ignored. Indeed, when a plate partly obscures another,

the nominal cross-section model will double-count this overlap.335

By computing the intersections of the spacecraft plates projected along

the viewing direction, and accounting for this double-counting, it is possi-

ble to compute the correct cross-section. First implemented in GEODYN for

the Mars Odyssey mission to improve density estimates of the Martian exo-

sphere (Mazarico et al., 2007), this capability was used for both atmospheric340

drag and solar radiation in the recent analysis of the combined Mars Global

Surveyor, Mars Odyssey, and Mars Reconnaissance Orbiter tracking datasets

to obtain a high-resolution Mars gravity field (Genova et al., 2016). Of course

in the case of the Moon, atmospheric drag is not considered. We note that

we currently only model self-shadowing in the computation of the direct solar345

radiation, not for the non-conservative accelerations due to reflected sunlight

(‘albedo’) and due to the lunar thermal emission. Indeed, while for the direct

solar radiation we only need to compute the cross-section seen from the Sun

direction, a large number of elements on the lunar surface would need to be

considered for these other radiation pressure contributions. The limited im-350
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Figure 4: Temporal history of the effect of self-shadowing in % of total spacecraft cross-section

in the Sun direction over ∼ 1 year. Each column corresponds to one orbit (∼ 2 hours). The

two operational modes for the LRO solar array (fixed and Sun-tracking) are clearly visible.

Vertical streaks correspond to spacecraft slews.

provement currently seen by accounting for the self-shadowing may be further

improved by extending the computations to the albedo and thermal radiation

pressure accelerations, but at significant additional computational expense.

Figure 4 shows an example of the effect of self-shadowing on the LRO cross-

section. Figure 5 documents this effect over the whole mission, showing how355

the self-shadowing impact is decreased over certain geometries (β <30◦).

4.4. Direct Altimetry

Previous work with planetary laser altimeters used crossover measurements

as a geodetic tracking type to improve spacecraft ephemeris reconstruction and

gravity field recovery (Rowlands et al., 1999; Neumann et al., 2001; Goossens360

et al., 2011b; Mazarico et al., 2012). Two segments of altimetric profiles that

intersect are processed during the OD iterations, and contribute to the geodetic

parameter estimation by pushing this estimation to minimize the distance be-

tween the two curves describing the surface topography. Although powerful (es-

pecially in the case of LOLA where effectively five single-beam tracks intersect365

at each crossover location, yielding 25 ground track intersections; Rowlands

et al., 2008), the use of crossover measurements is computationally intensive,

logistically difficult to produce and analyze, and limited spatially. In the case
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of the Moon and a polar orbiter in particular, the vast majority of crossovers

occur near the poles.370

Now that LOLA has acquired the highest-quality topographic model of the

Moon (Smith et al., 2017), and has been combined with the Kaguya Terrain

Camera stereo-derived elevation model to produce the global high-resolution

(512 ppd) geodetically-accurate (tied to LOLA at submeter-level) shape model

SLDEM2015 (Barker et al., 2016), another altimetric measurement proves even375

more useful to orbit reconstruction. That measurement type is not new, having

been implemented and used in GEODYN for the ICESat mission (Luthcke et al.,

2000). GLAS altimetric data were used over the Earth oceans to calibrate the

laser boresight pointing and achieve improved positioning accuracy over the

polar regions. Differences in geolocated height of profiles with respect to an380

ocean surface reference model were primarily attributable to pointing errors,

given the good long-wavelength knowledge of the ocean surface (geoid).

Extending this technique to short-scale, high-resolution targets, we can use

the LOLA and SLDEM2015 topographic models as basemaps for this ‘direct

altimetry’ measurement. Figure 6 illustrates the difference between crossover385

and direct altimetry measurements. The information contained in an altimet-

ric crossover is that two 3-D topographic profiles should intersect at one point.

These constraints are rare (only when ground tracks cross) and relatively weak

(the true intersection point is not known). On the other hand, the adjustment

of altimetric ranges directly against a precise LOLA-based topography model is390

unambiguous, geometrically stronger, geodetically accurate, and possible over

the whole altimetric profile’s length provided a good basemap is available. In-

dividual LOLA ranges are matched to the basemap during orbit determination,

through adjustment of both spacecraft position and pointing, in order to min-

imize the discrepancies. Similarly, iterative adjustments have been performed395

in the past to improve the accuracy of topographic models (Zuber et al., 2012;

Gläser et al., 2013, 2014), but the iterative matching within the dynamical

framework of GEODYN results in more robust and realistic spacecraft trajec-

tory. The high quality of the topographic datasets, not available in the past, is
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Figure X.  The information from an altimetric crossover is that two 3-D profiles should intersect. 
These constraints are rare (only when ground tracks cross) and relatively weak (the true intersection 
point is not known). On the other hand, the adjustment of altimetry ranges directly against a 
precise LOLA-based topography model is unambiguous, geometrically stronger, and available 
over the whole altimetric profile’s length.

Crossover Direct 
Altimetry

Tracks adjusted together. 
Relative constraint.

Tracks adjusted independently. 
Absolute constraint.

two track segments 
make one crossover 
measurement.

each range is a 
measurement

etc.

Figure 6: Examples summarizing the geometry of the crossover and direct altimetry measure-

ments.

key to enabling this method.400

Some limitations on the coverage existed initially, due to the size of the

basemaps that could be loaded in GEODYN. Indeed, the resolution of these

maps needs to be commensurate with the LRO position knowledge (<20 m) to

be able to contribute to the OD quality. We improved our initial implementation

to utilize large topographic maps, such as SLDEM2015 (60 m/pixel or better405

globally).

5. Orbit Determination with Radio Tracking

5.1. Data Processing

We analyzed the radio tracking data acquired by the White Sands and USN

tracking stations between July 2009 and November 2016. We followed the same410

OD strategy as before Mazarico et al. (2012), with ‘arcs’ typically 2.5 days

long in order to include 3 White Sands passes. The White Sands pass at the

beginning of each arc provides an overlap period with the previous arc, and

conversely the end of the arc coincides with the end of another White Sands

tracking pass two days later. Every other White Sands tracking pass is thus415

contained within two consecutive arcs. This typical arc length is impacted by
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the presence of spacecraft events (maneuvers for the great majority; safe modes

a few times), either reducing them to 1-1.5 days, or lengthening them to a

maximum of 3.5-4 days. In total, the LRO trajectory over >7 years is divided

into 1304 arcs.420

Each arc is first forward-integrated based on an initial state obtained from

the daily reconstructions by the navigation team, with the GRAIL gravity field

GRGM900C (Lemoine et al., 2014) truncated at Lmax=270. The measurement

residuals are evaluated to remove any outliers and identify tracking passes with

specific issues (e.g., adding an individual measurement or timing bias if it does425

not follow the per-arc biases used nominally). The arc is then iteratively con-

verged, still with Lmax=270, by estimating six spacecraft state parameters, one

solar radiation scale factor and one empirical acceleration. Further data editing

is performed with automatic filtering algorithms before final visual inspection.

The estimated spacecraft state, solar radiation scale factor, and empirical con-430

stant along-track acceleration are then used as a priori values for a final con-

vergence with the field truncated to Lmax=600. The integration time step is

reduced from 5 seconds to 1.25 seconds, and the newly-converged trajectory is

output with a 5-s time step.

These trajectory files are then combined into batches approximately one435

month long, following the conventions used for the LOLA altimetric data archive,

and converted to NAIF SPICE format. These higher-quality trajectory recon-

structions are shared with the LRO instrument teams, in particular LROC to

support instrument calibration (Speyerer et al., 2016), analysis (Wagner et al.,

2017) or the production of higher-level products such as mosaics. These SPK440

files are then archived on a best-effort basis at the LRO Radio Science archive

(imbrium.mit.edu).

5.2. Results

Data Fit. Data fits are an important measure of OD quality, since the measure-

ment residuals (observed minus computed values of the observable) are what445

GEODYN minimizes iteratively. The LRO residuals may still show some struc-

21
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Figure 7: Time series of Doppler (left) and Range (right) residual RMS values of each LRO

OD arc.

ture, partly because of timing. The time series over the whole mission of the

residual root mean square (RMS) per arc is plotted in Figure 7.

Data Quality. Except for first-order trends which result from mismodeling ef-

fects, the scatter of the pass-by-pass residuals can be used to assess the quality450

of the data acquired by each station, which can be informative in order to weight

the data appropriately during further processing. During post-processing anal-

ysis of the residuals obtained from OD-converged arc measurements, we first

detrend each tracking pass by removing a fitted spline curve, and apply several

sigma-threshold filters to remove potential remaining outliers. Figure 8 shows455

the time series and distribution of the Doppler noise for the various stations

that tracked LRO between 2009 and 2016.

As stated in Section 3.1, the primary station at White Sands (119) performs

the best, with an overall RMS of 0.2 mm/s. After hardware improvements, the

quality improved from 0.22 mm/s prior to August 2012 to 0.13 mm/s there-460

after. The performance of the Dongara (Australia) USN station (103) improved

in September 2012 from ∼ 0.63 mm/s to 0.3 mm/s. The South Point (Hawaii)

USN station (105) saw a similar improvement in July 2011. A newer USN sta-

tion nearby which started tracking LRO in April 2012 has shown consistent

∼ 0.3 mm/s noise levels. On the other hand, the Kiruna (Sweden) USN sta-465
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tion (126) showed a large increase in noise to 1-4 mm/s between February and

August 2013, after having shown improvements from 0.55 mm/s to 0.35 mm/s

in March 2010 and to 0.25 mm/s in November 2011. It was only rarely used

after 2013. The Kiruna back-up station (127) showed similar improvements in

2010 and 2011, and has continued to perform in the 0.2-0.3 mm/s range since.470

The Weilheim (Germany) USN station (129) performs the best within the USN

network, typically at 0.17 mm/s except between January and September 2010

which saw a noise increase to >1 mm/s. Of course, we find dramatically fewer

USN station tracking passes after September 2014, when LRO stopped using

the USN network to provide near-continuous tracking. The back-up station475

at Weilheim (128, not shown) was used more rarely, but showed similar good

performance starting October 2011.

Differences between the White Sands and USN stations also exist when it

comes to measurement and timing biases. Figure 9 shows the estimated Range

measurement biases, Doppler measurement biases, and station timing biases480

over the whole mission. Each station is displayed with a unique color. The

Range biases are generally commensurate (480-510 meters, Fig. 9a), because

the main contributor is the spacecraft transponder delay (∼490 meters). Some

stations show large discontinuities, presumably due to operations (e.g., USN
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station 129). With the Doppler data as the main contributor, the estimation485

of Range measurement biases is not really detrimental. On the other hand, the

presence of large Doppler measurement biases for all USN stations (∼10 mm/s,

Fig. 9b) may weaken those data compared to the White Sands data, whose

estimated Doppler biases are small (<0.5 mm/s).

As detailed in Mazarico et al. (2012), the unexpected presence of station490

timing biases in the Range data alone would yield strong trends in the Range

residuals if not accounted for. The adjustments are generally stable, but show

enough scatter to warrant per-arc estimation ( Fig. 9c). The White Sands

station saw a large discontinuity in August 2013, lowering the timing bias level

from 6-7 ms down to ∼3 ms. The USN stations all share a ∼-2 ms bias (∼-495

3 ms after December 2010), with a large arc-by-arc scatter. Again, although

weakening the Range data, these timing biases adjustments are not critical for

LRO OD quality because the Doppler data appear dominant in the iterative

reconstruction process.

5.3. Orbit Quality500

Because the spacecraft orbit cannot be independently verified, in the way

that, for instance, imaging a surface feature can yield direct morphologic mea-

surements, the assessment of the orbit reconstruction quality can be challenging.

We use several ways to study the orbit accuracy, which brings further confidence

to our estimated position knowledge.505

Orbit overlaps. Whenever possible (no maneuver), adjacent arcs overlap by

design over White Sands tracking passes, which provides a consistent metric

over the whole mission for orbit quality assessment. The orbit differences and

statistics are computed over each overlapping period, in each of the along-track,

cross-track, and radial directions (ACR). The overlap in total position is also510

computed, primarily tracking the horizontal position accuracy given the radial

overlaps are typically an order of magnitude smaller than the along-track and

cross-track components. The results are shown in Figure 10. We note little to
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no degradation after the loss (phases 65-93) of near-continuous coverage that

was possible with support from USN stations.515

The quality of the reconstructed trajectory varies with the viewing angle

from the Earth (α, see Section 2.1), as expected when considering the line-

of-sight components of the spacecraft velocity. As shown in Figure 11, the

sensitivity of the orbit quality is different for various directions. In the along-

track and radial directions, the overlaps are typically better when the orbit is520

viewed edge-on, while the cross-track overlaps are typically smaller in a face-

on geometry. Though small compared to other effects described below, the

differences between face-on (α = 90◦) and edge-on (α = 0◦) can be significant

in relative terms. Along-track overlaps degrade from a typical value of ∼2 m

at α = 0◦ to ∼7 m at α > 45◦. In the radial direction, a similar trend exists525

from ∼25 cm to >50 cm at α > 60◦. In the cross-track direction, the overlaps

improve from ∼5 m at α < 45◦ to ∼2 m at α > 60◦. These combined trends

nearly cancel each other when considering the total positional knowledge, with

a general level of 7-8 m over most of the range, but 5-6 m at low α values.

Orbit Differences. Another independent validation involved studying the orbit530

differences with the daily reconstructions provided by the navigation team at

NASA GSFC Flight Dynamics Facility (FDF). These could show large differ-

ences, although generally on a par with FDF’s own assessment of orbit quality,

meaning our orbit errors did not contribute much to the general discrepancy lev-

els observed in the differences. The FDF solutions are discontinuous by design535

at midnight, or sometimes noon. The fact that we observe many of the orbit

difference discontinuities at these times is consistent with errors largely origi-

nating from the FDF time series. Recent changes of OD strategy by FDF, in

particular with the use of the GRAIL gravity field to high degree (Lmax=270),

improved the quality of the daily orbit reconstructions and reduced the typical540

magnitude of the differences with our orbits.

LOLA Altimetric Ranges. Although a tracking data type in its own right (Sec-

tion 4.4), the LOLA altimetric measurements can constitute an independent
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dataset to evaluate the quality of the radio-only orbit reconstructions. We first

evaluated the RMS of the residuals between the elevations of the SLDEM2015545

shape model and the elevations of the LOLA altimetric points geolocated from

our reconstructed LRO orbits. We find typical values of 3-5 meters, in good

agreement with Barker et al. (2016), the inherent noise floor of the Kaguya

Terrain Camera stereo DEM (Haruyama et al., 2012). Our estimate of radial

accuracy (<1 m) is thus consistent with these direct height comparison results.550

These early comparisons were focused on aggregate RMS values, but more

detailed information can be obtained by comparing short track segments to a

shape model, and adjust the position of these track segments until a best fit is

obtained. This is particularly interesting in the immediate polar regions, as the

resolution of the LOLA-only DEM is very high, of the same order of magnitude555

as our stated orbit accuracy. We performed such adjustment analysis in the

past, primarily to improve the intrinsic quality of DEMs (e.g., Zuber et al.,

2012).

Here, we extend this to the whole lunar surface. We divide each ∼2-hour

LOLA profile into short segments, defined by their groundtrack falling within560

2◦×5◦ tiles distributed globally. This produces about 886,000 segments ∼90

seconds long, each with typically 500 to 10,000 points (night vs day). Each

segment is adjusted to match the SLDEM2015 topographic map, through iter-

ative estimation of a spacecraft position error, assumed constant in each of the

ACR directions over the short interval. Note we do not estimate a displace-565

ment of the geolocated points themselves, but of the spacecraft, such that our

corrections actually reflect trajectory corrections, rather than a combination of

these and changes in spacecraft orientation. After filtering segments with too

few data points (<100), we obtain ACR offset statistics commensurate with the

overlap-based estimates. For the horizontal directions, we first need to remove570

a periodic term first observed when processing the crossover measurements to

detect the lunar tidal deformation signal (Mazarico et al., 2014b), due to time-

variable laser altimeter pointing errors, potentially caused by the LOLA thermal

blanket anomaly.
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LROC NAC Observations. A completely independent measure of orbit quality575

can be obtained from the high-resolution, narrow-angle cameras onboard LRO.

With a resolution of 50 cm/pixel from the nominal 50-km orbit, the LROC

NACs repeatedly imaged key sites during the nominal mission (the so-called

Constellation sites). LROC has continued to image certain sites at nearly ev-

ery opportunity, particularly the ‘anthropogenic features’ (Wagner et al., 2017),580

which has helped refine the calibration parameters (Speyerer et al., 2016). In

addition, their locations in the Moon-fixed frame could be determined from

these repeat looks since errors due to pointing and orbit were reduced statisti-

cally (Wagner et al., 2017). With improved camera calibration, verified pointing

precision, and accurate coordinates, these anthropogenic features thus become585

excellent landmarks to assess the quality of the orbit reconstruction. By com-

paring the pixel position in which a given artifact appears in an image to its

expected position, geodetic accuracy can be assessed. Each observation yields

an offset in the line and sample coordinates, which given LRO’s near-polar orbit

roughly correspond to the longitude and latitude directions.590

The reconstructed LRO orbit presented above was used to perform such an

analysis, with 60 unique landmarks observed in 747 unique NAC images, for a

total of 1,573 observations of offset residuals. Figure 12 shows the histograms of

the errors in the two directions, expressed in meters at the surface. Excluding a

few outliers, the RMS values in each direction are similar, at a level of 9-10 m.595

Given that other error sources contribute to these residuals as well (pointing,

coordinate frame, etc.), this independent assessment with the NAC images can

be considered in excellent agreement with the overlap analysis.

5.4. Effect of gravity field

From Lunar Prospector to GRAIL. Before the GRAIL mission (Zuber et al.,600

2013a,b), our knowledge of the lunar gravity field compared poorly to that

of Mars, primarily because of the lack of spacecraft tracking data over the

farside due to the Moon’s tidal lock. Although the Japanese Selenological and

Engineering Explorer (SELENE) mission included a small relay satellite in an
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coordinate observations were converted to meters at the surface, and are expected to be

primarily the result of orbit reconstruction errors.
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elliptical orbit to enable 4-way indirect tracking of the low-altitude primary605

spacecraft (Kaguya), it did not yield comparable resolution over the farside as

over the nearside (Namiki et al., 2009; Goossens et al., 2011a).

During the first few years of the LRO mission, no GRAIL-derived lunar

gravity field was available. LRO-specific gravity field solutions were obtained

by combining the historical data (from the 1960’s Lunar Orbiters, 1970’s Apollo610

sub-satellites, 1990’s Clementine and especially Lunar Prospector) with the LRO

tracking data themselves. As shown by Mazarico et al. (2012), this allowed

radio-only OD to perform on a par with radio and altimetry OD, using such

LRO-specific solutions. Because of the secular trend in inclination of LRO’s or-

bit and the inherent weakness in the LRO tracking geometry, this good gravity615

performance could only last approximately a year before significant degradation

was obvious. As such, we developed the LLGM-2 gravity field, which contains

one additional year of data compared to LLGM-1 introduced by Mazarico et al.

(2012). Then, the availability of GRAIL gravity solutions of much higher accu-

racy and thus OD performance even for the LRO orbit, obviated the need for620

latter LRO-specific solutions.

To show the transformative impact of GRAIL on lunar orbiter OD, we repro-

cessed the whole LRO mission period with several pre-GRAIL fields: LLGM-2,

LP150Q (Konopliv et al., 2001), and SGM150J (Goossens et al., 2011a). Fig-

ure 13 shows the resulting orbit accuracy, evaluated through overlap analysis.625

The good performance of LLGM-2 for the specific application of LRO is evi-

dent, as it achieves orbit quality of 10-20 meters for the first two years despite

a coarse resolution with Lmax=150 (by current, post-GRAIL standards). We

note that the increasing trend due to the lack of low-inclination LRO tracking

data included in LLGM-2 slowly erases the initial performance benefit com-630

pared to the other two pre-GRAIL fields. The overlap statistics for LP150Q

and SGM150J are near-identical over the whole LRO mission span. All these

show a secular degradation in performance, again likely due to the fact that

LRO drifted out of the orbit inclination range (Section 2.1) of their primary

near-polar contributors, Lunar Prospector (i=90.5◦) and SELENE (i=90.0◦).635
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The GRAIL gravity field evaluated to Lmax=600 does not show any of this

secular degradation, and performs significantly better over the whole mission

span, even at inclinations not directly experienced by the twin GRAIL space-

craft Ebb and Flow (i=88.6-89.8◦), highlighting its accuracy and the benefits it

does and will bring to lunar orbiter OD in any configuration. However, when640

repeating the analysis, with a significantly-truncated GRAIL field, at the same

Lmax=150 as the pre-GRAIL fields we evaluated, we find that its performance

is not markedly different. This might indicate the need for larger gravity field

expansions to achieve sub-10-m orbit accuracy levels with LRO, both in its

nominal ∼50 km orbit and its current elliptical frozen orbit.645

Effect of gravity field resolution. In this section, we investigate the effect of the

maximum expansion degree of the GRAIL gravity field utilized during OD. As

shown just above, it can have a significant impact on orbit quality. Of course,

larger expansions are expected to perform better, especially for truncation de-

grees below the degree strength of the GRAIL fields (typically >750, Lemoine650

et al., 2014).

We ran reconstructions of the LRO trajectory over the entire mission period,

with various truncation degrees from 100 to 600. We noted that orbit differ-

ences between L>300 reconstructions were becoming small, even more so for

L>500, so we did not investigate L>600 reconstructions despite the considered655

gravity field extending to L=900. Figure 14 shows the overlap analysis results

in all directions. It demonstrates that when performing LRO OD the GRAIL

gravity field should be used to L≥250 to obtain optimal reconstruction quality.

Using expansions larger than L=300 is typically not advantageous for the LRO

mission, although we note that over the last 2 years of the studied period, the660

performance of L=600 reconstructions is clearly superior to that with L=300.

It could also be beneficial to other missions with more accurate tracking data.

With improved modeling of the spatial variations of the Moon’s gravita-

tional accelerations on LRO, we expect smaller magnitude and variability of the

empirical parameters used in OD to improve the tracking data fit. We calcu-665
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with the various gravity fields. The pre-GRAIL models (LP150Q, SGM150J, and LLGM-2)

are used to their maximum expansion degree of 150, while the GRAIL gravity field is used at

both L=150 and L=600. Note the logarithmic scale.
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lated the statistics of the estimated empirical constant along-track accelerations

(Aemp) and solar radiation scale factor (CR). Discounting the few outliers that

skew the computed standard deviations, we find that the spread in CR is re-

duced from 1.78 for Lmax=100 to 0.26 for Lmax=150 to 0.15 for Lmax=300-600.

Similarly, the typical value of the zero-meaned Aemp is reduced from 1.28×10−8
670

m/s2 for Lmax=100 to 5.9×10−9 m/s2 for Lmax=150 and to <1.5×10−9 m/s2

for Lmax ≥300. The leveling of Aemp beyond degree 300 may indicate that

gravitational modeling errors are then negligible and other mismodeling error

sources become dominant.

Effect of integration time step. Here, we address whether the use of the high-675

resolution of the lunar gravity fields obtained by the GRAIL mission requires

integration of the spacecraft trajectory during OD with small time steps. Indeed,

an expansion to Lmax=600 has a surface block resolution of 9 kilometers, which

LRO travels in ∼5.5 seconds, without considering the oversampling that might

be desired to account for the effects of the smallest resolved features.680

Our nominal processing is performed with a time step of 1.25 to 2.5 seconds.

We reprocessed the complete LRO tracking dataset with time steps of 5, 10 and

15 seconds. Surprisingly, we find little to no difference over the majority of the

mission, in both the orbit differences (evaluated every 60 seconds) and thus also

the orbit overlap performance, between these fully-iterated integrations. For685

a few phases, the performance is slightly degraded starting for ∆t>10 s. For

∆t=15 s, we find the performance has degraded since Summer 2015, although

there is no indication of degradation for ∆t≤10 s.

Thus, although not expected, it appears that good accuracy and computa-

tional performance can be obtained by performing the orbit integration with690

rather large time steps (∆t=5-10 s), even when using the GRAIL gravity field

to high expansion (Lmax=600). We note that this may have changed and needs

to be assessed with other orbiters, particularly if the tracking measurement ac-

curacy is significantly better. The relatively low quality of the LRO S-band

data may reduce the sensitivity to slight integration effects with different time695

36



steps.

5.5. Effect of radio tracking coverage

Loss of USN. In 2014, as the LRO project considered cost-saving measures

in preparation for the ESM2 mission, we performed a study to evaluate the

potential impact of losing tracking support by the USN stations. This showed700

that the USN tracking data contributed very little to the overall orbit quality

and orbit consistency during overlap periods (evaluated during White Sands

passes).

We updated this study here over the whole LRO mission, and reached iden-

tical conclusions. The overlap statistics, especially when evaluated over mission705

phases, show very small changes only. In nearly half the cases, ignoring the

USN data can actually be beneficial to this metric of orbit overlaps, perhaps

because the measurement and timing biases affecting the USN data can make

it inconsistent with the higher-quality White Sands data.

Loss of White Sands. As a counterpoint, we studied the dependence of LRO OD710

quality to the coverage provided by the White Sands station. We reprocessed

the USN-only data over the whole mission timespan, using the same arc spans.

The statistics of the overlaps degrade, but not substantially, undoubtedly in

large part thanks to the availability of highly accurate gravity field information

from GRAIL. In the radial direction, the per-phase overlap RMS increases from715

∼0.5 m to 1-2 m. The cross-track performance is not degraded for all mission

phases, and in that case only by 2-10 m typically. The along-track direction is

most affected, though again many mission phases perform nearly as well as the

arcs processed with the entire tracking data. Driving the total position error,

these increases in along-track overlap RMS are of order 5-10 m, and up to 20720

m. Overall, and given the fact that the overlap periods are now over periods

not covered by any data at the edges of each arc, the performance of LRO OD

with USN coverage alone is rather good. Of course, after September 2014, the

USN coverage is too sparse in many cases to enable robust convergence of the

OD process.725
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5.6. Effect of the Empirical Accelerations

Although unsatisfactory, a constant along-track empirical acceleration ap-

plied to the spacecraft continues to significantly improve OD quality, even when

using GRAIL gravity. Like Mazarico et al. (2012), we only estimated one such

parameter per arc, and the recovered values are typically small (1-2×10−9m/s2,730

see Section 5.2), so one could have expected the impact of not using them to

be small. However, the re-analysis of the data with no such empirical accelera-

tion led to much poorer results, both in terms of data fits and overlap perfor-

mance. The Doppler residuals per-arc RMS increases from 0.38±0.19 mm/s to

0.93±0.70 mm/s. The per-phase orbit overlaps increase to 3.3 m radially and735

∼45 m in total position.

5.7. Effect of Solar Radiation

As noted above, the per-arc solar radiation scale factors (CR) adjust close to

the expected value of unity, 1.03±0.24. Unlike the empirical accelerations, the

data fits and OD quality are affected only in a minor way, with Doppler RMS740

values increasing to 0.40±0.19 mm/s. The RMS of the empirical acceleration

magnitudes only increase from ∼1.9 to ∼2.0 ×10−9m/s2.

On the other hand, the solar radiation factors estimated over each arc do

show a clear trend when plotted against the β angle (Figure 15), indicating

residual mismodeling of the spacecraft. Current work is focused on better un-745

derstanding this observation, which may be related to self-shadowing effects on

the spacecraft cross-section relevant to the albedo and thermal radiation pres-

sure computations and/or the albedo and thermal models used for the lunar

surface. However, this does not affect the orbit quality (the orbit overlaps do

not show any trend with β), suggesting that the adjustment of empirical accel-750

erations is sufficient to absorb this mismodeling.
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6. Laser altimetry as a tracking measurement

6.1. OD with direct altimetry

After improvements to the implementation of the ‘direct altimetry’ mea-

surement type described in Section 4.4, we demonstrated its use with the high-755

resolution topographic model SLDEM2015. Focusing on 53 arcs covering ap-

proximately four months in early 2010, we processed LRO radio tracking data

and LOLA altimetric data in combination to reconstruct the LRO trajectory. To

better evaluate the effect of the added altimetry, we considered several subsets

of LOLA data spanning different latitudinal ranges around both poles: 80◦-90◦,760

70◦-90◦, 50◦-90◦, 30◦-90◦, and finally the whole globe.

For computational reasons, and also to prevent the altimetry data from

completely overwhelming the Doppler and Range measurements in terms of

number of observations, we downsampled the LOLA data to one channel (spot

#3, least affected by the day-night variations in return rate due to the thermal765

blanket anomaly) and to 2 Hz. We also varied the resolution of the (cylindrical

projection) topographic basemap with latitude, in an effort to maintain a more

uniform spatial resolution, around 60 meters/pixel. As such, we used 64 ppd

between 80◦ and 85◦ latitude, 128 ppd between 70◦ and 80◦, 256 ppd between

50◦ and 70◦, and 512 ppd equatorward of 50◦ latitude. Poleward of 85◦, we770

used polar stereographic maps based on LOLA data alone, at 20 meters/pixel

resolution.

We first compared the orbits obtained from radio-only OD with those that

included altimetry, and we find that as more altimetry is included and its cov-

erage improves, the RMS of the differences increase only slightly (Table 1), by775

about 5±3 meters in total position. The radial differences are very small, only

20 cm RMS, and the changes in both along-track and cross-track directions are

comparable.

Considering the overlap metrics shown in Table 1, we see that the orbit ac-

curacy steadily improves with increasing altimetry coverage in addition to the780

radio tracking data. In the subset we studied, the improvement is typically
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Table 1: Assessment of orbit differences and orbit overlap metrics for 4 months in 2010, when

using radio data alone or in combination with varying amounts of direct altimetry coverage.

The values shown indicate the RMS and standard deviation, in meters.

Orbit differences of radio+altimetry vs. radio-only orbits (m)

Altimetry
Along-Track Cross-Track Radial Total Position

coverage

80◦-90◦ 3.64 ± 2.38 3.62 ± 2.56 0.18 ± 0.06 5.13 ± 3.19

70◦-90◦ 3.76 ± 2.28 3.73 ± 2.66 0.20 ± 0.07 5.29 ± 3.10

50◦-90◦ 3.54 ± 2.01 3.60 ± 2.56 0.22 ± 0.09 5.05 ± 2.83

30◦-90◦ 3.64 ± 2.08 3.50 ± 2.51 0.27 ± 0.11 5.05 ± 2.79

00◦-90◦ 3.99 ± 1.94 3.43 ± 2.44 0.42 ± 0.15 5.28 ± 2.55

Overlaps of radio-only and radio+altimetry orbits (m)

Altimetry
Along-Track Cross-Track Radial Total Position

coverage

Radio only 5.40 ± 1.85 3.71 ± 0.34 0.23 ± 0.04 6.50 ± 1.59

80◦-90◦ 5.44 ± 1.11 4.15 ± 1.13 0.26 ± 0.06 6.88 ± 1.53

70◦-90◦ 5.29 ± 1.11 4.05 ± 1.03 0.27 ± 0.06 6.70 ± 1.47

50◦-90◦ 4.58 ± 0.98 3.49 ± 0.83 0.26 ± 0.04 5.78 ± 1.25

30◦-90◦ 3.81 ± 0.94 3.02 ± 0.70 0.25 ± 0.03 4.89 ± 1.12

0◦-90◦ 3.38 ± 0.73 2.83 ± 0.47 0.27 ± 0.01 4.45 ± 0.77

Overlaps of altimetry-only orbits (m)

Altimetry
Along-Track Cross-Track Radial Total Position

coverage

80◦-90◦ 2.43 ± 0.59 21.85 ± 5.21 0.88 ± 0.25 24.00 ± 5.76

70◦-90◦ 1.78 ± 0.48 8.24 ± 2.62 0.60 ± 0.15 9.02 ± 2.83

50◦-90◦ 1.40 ± 0.40 6.13 ± 4.17 0.38 ± 0.10 6.69 ± 4.36

30◦-90◦ 1.28 ± 0.31 5.98 ± 3.98 0.35 ± 0.08 6.52 ± 4.14

0◦-90◦ 1.58 ± 0.20 5.65 ± 3.38 0.33 ± 0.06 6.21 ± 3.41
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∼ 30% in total position, primarily through improvement of the along-track per-

formance. The cross-track also improves; the radial direction, of much smaller

magnitude, is very slightly degraded. In future work, we will proceed with our

effort to include the altimetry data in the orbit reconstruction of LRO over the785

whole mission duration, and we will be able to confirm the trends observed in

this first study.

Beyond the improvement of the overlaps and the reconstructed orbit ac-

curacy, direct altimetry may also prove important to detect subtle long-term,

long-wavelength spacecraft orbit perturbations, thanks to the use of topographic790

basemaps as common reference for arcs even widely separated in time.

6.2. Altimetry-only OD

To evaluate the strength of altimetry data themselves for OD, which may

be useful is certain applications, we next consider altimetry-only OD. We re-

constructed the trajectory of LRO over most of its mission using only direct795

altimetry data. We only considered the ranging data falling within the two

topographic basemaps of the immediate polar regions (85◦-90◦), with a resolu-

tion of 20 meters/pixel). The resulting orbits are in good agreement with the

radio-only solutions presented above. The majority of the arcs show statisti-

cal measures of the orbit overlap metric on a par with these results. However,800

although the peak of the distribution of the total position accuracy is below

10 meters, we find that the distribution has a long tail (Figure 16), raising the

overall overlap RMS to 20-25 meters in total position, and ∼ 2 meters radially.

More of these higher values and outliers occur after 2012, when LRO was in its

eccentric orbit and LOLA could only obtain reliable altimetric measurements805

over the southern hemisphere. Table 2 shows the overlap statistics for the radio-

only and altimetry-only cases over the LRO circular phase (September 2009 to

December 2011). The fact that the orbits are only determined from data over

10 degrees of arc (85◦S-90◦S-85◦S) is the likely reason for occasional poorer

performance. Indeed, with the same 4 months in 2010 as in Section 6.1, the810

altimetry-only overlaps are significantly reduced with better altimetry coverage
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Table 2: Comparison of the overlap performance in the LRO circular orbit between the radio-

only and altimetry-only cases. The values shown indicate the RMS and standard deviation,

in meters.

Data Used
Along-Track Cross-Track Radial Total Position

overlap (m) overlap (m) overlap (m) overlap (m)

Radio only 7.48 ± 5.73 6.21 ± 4.32 0.53 ± 0.36 9.90 ± 6.82

Altimetry only 10.19 ± 8.09 13.07 ± 9.14 2.55 ± 1.98 17.74 ± 11.93

(bottom section of Table 1), primarily because of a better consistency between

consecutive arcs in the cross-track direction.

We also examined the dependence on the orbit observability from Earth

(the α angle; Section 5.3), and find no trend with α in any of the orbit frame815

directions. This agrees with what we expected, given we do not include any

ground-based data, and expect the GRAIL gravity field to be of excellent quality

and accuracy globally, unlike previous generations of lunar gravity fields which

had a nearside-farside asymmetry in their performance.

7. Summary820

We presented the results of the orbit determination work carried out in

support of the Lunar Reconnaissance Orbiter mission, with the primary goal

to obtain high-precision trajectory reconstruction for the production of high-

level data products by the various LRO instrument teams. These trajectories,

of higher quality than the daily reconstructions by the Navigation team, are825

archived on the LOLA PDS Data node (imbrium.mit.edu) and on the Plan-

etary Geodynamics Data Archive (PGDA, https://pgda.gsfc.nasa.gov/).

We showed how recent force modeling improvements of the perturbations af-

fecting the LRO spacecraft now yield typical orbit reconstruction accuracy be-

low 10 meters in total positional knowledge, and better than 1 meter radially.830

We also showed how the LOLA altimetric data can be not only used for orbit

accuracy assessment, but also as a tracking data type to support orbit recon-

struction. Using these data as ‘direct altimetry’ measurements rather than the
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more complex and sparser ‘crossover’ measurements used in past studies affords

both flexibility and accuracy.835

The fact that altimetry data alone provide sufficient geodetic constraints to

support orbit reconstruction of excellent quality suggests that the geodetic needs

of future lunar orbiters could be supported entirely with relatively simple laser

altimeters or range finders. Thanks to our knowledge of lunar topography from

instruments such as LRO-LOLA and Kaguya-TC, low-frequency (1 Hz) ranging840

to the lunar surface can achieve accurate orbit reconstruction. Autonomous nav-

igation and onboard OD could be implemented, provided large-size topographic

maps could be stored onboard the spacecraft.

Future work will focus on utilizing the entire LOLA dataset for orbit re-

construction, rather than just a short period in 2010 as presented here. Fur-845

ther improvements to the force modeling are possible, through the addition of

spacecraft thermal reradiation in our modeling, and more careful computations

of the radiation pressure perturbations in particular, with more detailed space-

craft shape models and by accounting for self-shadowing effects for the planetary

albedo and thermal radiation terms.850

Acknowledgements

We thank NASA and the LRO project for supporting this work, as the

funding of the LOLA Science Team was essential to carry out this work. We

thank Robert Wagner (ASU) for providing the image landmark residuals of

anthropogenic features.855

References

Barker, M., Mazarico, E., Neumann, G., Zuber, M., Haruyama, J., Smith, D.,

2016. A new lunar digital elevation model from the Lunar Orbiter Laser

Altimeter and {SELENE} Terrain Camera. Icarus 273, 346 – 355. doi:10.

1016/j.icarus.2015.07.039.860

45

http://dx.doi.org/10.1016/j.icarus.2015.07.039
http://dx.doi.org/10.1016/j.icarus.2015.07.039
http://dx.doi.org/10.1016/j.icarus.2015.07.039


Bauer, S., Hussmann, H., Oberst, J., Dirkx, D., Mao, D., Neumann, G.,

Mazarico, E., Torrence, M., McGarry, J., Smith, D., Zuber, M., 2017. Anal-

ysis of one-way laser ranging data to LRO, time transfer and clock charac-

terization. Icarus 283, 38 – 54. doi:10.1016/j.icarus.2016.09.026. lunar

Reconnaissance Orbiter - Part {II}.865

Boehm, J., Niell, A., Tregoning, P., Schuh, H., 2006. Global mapping function

(gmf): A new empirical mapping function based on numerical weather model

data. Geophysical Research Letters 33. doi:10.1029/2005GL025546. l07304.

Buccino, D.R., Seubert, J.A., Asmar, S.W., Park, R.S., 2016. Optical Ranging

Measurement with a Lunar Orbiter: Limitations and Potential. Journal of870

Spacecraft and Rockets 53, 457 – 463. doi:10.2514/1.A33415.

Chin, G., Brylow, S., Foote, M., Garvin, J., Kasper, J., Keller, J., Litvak, M.,

Mitrofanov, I., Paige, D., Raney, K., Robinson, M., Sanin, A., Smith, D.,

Spence, H., Spudis, P., Stern, S.A., Zuber, M., 2007. Lunar Reconnaissance

Orbiter Overview: TheInstrument Suite and Mission. Space Science Reviews875

129, 391–419. doi:10.1007/s11214-007-9153-y.

Folkner, W.M., Williams, J.G., Boggs, D.H., 2008. The planetary and lunar

ephemeris DE 421. IPN Progress Report , 42–178.

Genova, A., Goossens, S., Lemoine, F.G., Mazarico, E., Neumann, G.A., Smith,

D.E., Zuber, M.T., 2016. Seasonal and static gravity field of Mars from MGS,880

Mars Odyssey and {MRO} radio science. Icarus 272, 228 – 245. doi:10.1016/

j.icarus.2016.02.050.
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